суббота, 30 мая 2020 г.

The asteroids Ryugu and Bennu were formed by the destruction of a large asteroid

What is the origin of the asteroids Bennu and Ryugu, and of their spinning-top shape? An international research team led by Patrick Michel, a CNRS researcher at the Laboratoire Lagrange and Ronald-Louis Ballouz from the University of Arizona, proposes an answer to this question in an article published in Nature Communications on May 27, 2020. Numerical simulations of large asteroid disruptions, such as those that take place in the asteroid belt between Mars and Jupiter, show that during such events, fragments are ejected and then reaccumulate forming aggregates, some of which have a spinning-top shape. The simulations also show that Bennu and Ryugu may have formed from the disruption of the same parent asteroid even though their levels of hydration are different. The scientists conclude that the overall properties of these asteroids could directly result from the disruption of their parent body. The analysis of return samples from Ryugu and Bennu by the Hayabusa2 (JAXA) and OSIRIS-REx (NASA) spacecraft will allow us to verify this by measuring precisely their composition and by determining their formation age.


воскресенье, 24 мая 2020 г.

Миссия «Психея» задерживается из-за проблем с приобретением электронных компонентов

Первая миссия НАСА по исследованию металлического астероида столкнулась с задержками в получении ключевых инструментов и передовых электронных компонентов, согласно новой оценке Управления по подотчетности правительства США (GAO). Миссия «Психея» стоимостью $996,4 миллионов нацелена на изучение металлического астероида 16 Психея. Запуск космического корабля запланирован на август 2022 года. «Главный технический риск для проекта заключается в том, что доставка магнитометров, используемых для обнаружения и измерения магнитного поля астероида Психея, вероятно, будет отложена на срок до 4 месяцев из-за потери опытного персонала и рабочих на заводах его подрядчика», - говорится в оценке. Чиновники программы также сообщают, что приобретение передовых электронных компонентов стоит дороже и занимает больше времени, чем предполагалось. «Официальные лица заявили, что эти длительные сроки подготовки привели к задержкам в поставках деталей, что в свою очередь задержало испытание конструкции прибора для гамма-лучевого и нейтронного спектрометра (GRNS), который будет использоваться для определения элементного состава Психеи - примерно через 3 месяца», - говорится в сообщении.


Миссия пытается уменьшить эти риски, нанимая больше персонала, ища альтернативных поставщиков и повышая приоритет на покупку запчастей, изготовление которых требует длительного времени.

пятница, 22 мая 2020 г.

NASA's Webb will study the 'building blocks' of our solar system

Millions of asteroids roam our solar system. Many are clustered between Mars and Jupiter in the main asteroid belt while another group, known as Trojans, both lead and follow Jupiter. What can these chunks of rock, which zip around the solar system like race cars, tell us about the formation of the solar system? Upcoming research with NASA's James Webb Space Telescope, led by Andrew S. Rivkin of the Johns Hopkins University Applied Physics Laboratory, will yield new data that will help astronomers begin to unravel these mysteries. "What's great about asteroids is that there are so many of them," said Rivkin. "It means there is always something bright enough and in the right place for Webb to observe." Rivkin is collaborating with Cristina A. Thomas of Northern Arizona University; Stefanie N. Milam of NASA's Goddard Space Flight Center; and Heidi Hammel, a planetary astronomer and vice president for science of the Association of Universities for Research in Astronomy (AURA) in Washington, D.C., to observe these asteroids in near- and mid-infrared light. This team's program will add many new observations to the growing body of research about asteroids, and will help them learn more about the origins and makeup of asteroids, providing clues to the history of how planets moved around in the early solar system.


The Dawn of the Solar System
Imagine our solar system as it formed 4.6 billion years ago: around our young Sun, a disk of gas and dust swirled, slowly condensing and creating small objects. As larger bodies like Jupiter and Saturn began forming, they collected gobs of gas, growing bigger and bigger. Soon, the gravitational influence of these larger bodies started to sculpt the disk, creating gaps.

Over millions of years, it's theorized that Jupiter, Saturn, Uranus and Neptune began moving from where they initially formed to their current locations, continuing to shape the inner solar system and eventually locking leftover rocks between Mars and Jupiter in regular orbits. As Jupiter moved inward, it kept these small objects stirred up, which meant that they could not as easily merge with one another to eventually form larger bodies like planets.

These messy, rocky leftovers are asteroids. Scientists now know that asteroids were the "building blocks" of the rocky, inner planets. Some formed closer to the Sun and others formed farther away, which means their compositions vary a lot. Perhaps the most intriguing detail researchers have already learned is that many asteroids may not have formed where they currently orbit.

The Rock Stars
This research team plans to study five known asteroids, three in the main asteroid belt and two Trojans, in near- and mid-infrared wavelengths to complement and extend other NASA missions' observations, and test new techniques with Webb.

They will observe these asteroids in part by using Webb's Near-Infrared Spectrograph (NIRSpec), an instrument that breaks light into its component colors to create a spectrum that the researchers will analyze to learn about each object's composition.

One key target in the main asteroid belt is a dwarf planet known as Ceres, which was visited by NASA's Dawn spacecraft from 2015 to 2018. Ceres has minerals containing ammonia on its surface, leading researchers to wonder whether it formed farther out in the solar system or if the dwarf planet incorporated material from farther afield. By obtaining Webb measurements at longer wavelengths than those obtained by Dawn, the team will be able to use the unique and complementary data set to verify if previous conclusions about its surface composition are correct.

At the same time, the observations will help establish a technique to observe targets that may be slightly too bright to observe in these wavelengths with Webb. "By doing the best science we can do with this bright object, we may open doors to new science opportunities with Webb for other researchers," Milam said.

Pallas, the second-largest asteroid in the main belt and a dwarf planet candidate, is another important target. Because of its orbit, Pallas would be very difficult for a spacecraft to visit. By observing it with Webb, this team will gather data about its surface and composition that is otherwise difficult to obtain. The team will also compare measurements of Pallas and another dwarf planet candidate, Hygeia, to data about Ceres, helping them identify the similarities and differences of their targets. These comparisons may offer clues about the formation histories of these building blocks of the inner planets.

The Trojan targets, Patroclus and Hektor, are very different from Webb's other asteroid targets-not only due to their location near Jupiter, but because they also have moons. Hektor is a binary and its moon orbits closely. In contrast, Patroclus and its moon have more space between them. "Webb will allow us to investigate each asteroid and moon separately," explained Rivkin. "By studying their moons, we'll also be able to examine how each of these binaries formed and compare these two systems." The data will also help astronomers refine models of how the Trojan asteroids were captured in their current orbits.

Data for the Entire Planetary Science Community
The team selected the program's targets carefully, ensuring that their data enhance those from existing and future missions and observatories. "Patroclus, for example, is a target of NASA's upcoming Lucy mission," Thomas said. "We can also compare the Webb data to previous data from ground-based observatories. There will be a lot of complementary data to examine."

By unraveling the histories of these particular asteroids, the research team hopes to learn more about our solar system's past. They emphasize that Webb provides a unique opportunity, not only due to its specialization in infrared light, but also because some of these targets are so difficult to observe with other facilities. "Webb lets us 'visit' a lot more asteroids with really high-quality observations we can't get with telescopes on the ground," Rivkin said.

The observatory also offers new scientific opportunities. "Webb will open a frontier for all scientists," explained Milam. "Our data will lead to new questions and provoke a lot of new science ideas for astronomers who are considering using Webb in the future."

This research is being conducted as part of a Webb Guaranteed Time Observations (GTO) program

of the solar system led by Heidi Hammel, a Webb interdisciplinary scientist. Dedicated GTO time was provided to the scientists who have worked with NASA to craft the science capabilities of Webb throughout its development.

"The purpose of these investigations is to ensure we're not only doing the best science we can do, but also setting the stage for the science that will come with Webb in the future," Hammel said.

четверг, 21 мая 2020 г.

OSIRIS-REx ready for touchdown on Asteroid Bennu for sample collection

NASA's first asteroid sample return mission is officially prepared for its long-awaited touchdown on asteroid Bennu's surface. The Origins, Spectral Interpretation, Resource Identification and Security - Regolith Explorer (OSIRIS-REx) mission has targeted Oct. 20 for its first sample collection attempt. "The OSIRIS-REx mission has been demonstrating the very essence of exploration by persevering through unexpected challenges," said Thomas Zurbuchen, NASA's associate administrator for science. "That spirit has led them to the cusp of the prize we all are waiting for - securing a sample of an asteroid to bring home to Earth, and I'm very excited to follow them through the home stretch." From discovering Bennu's surprisingly rugged and active surface, to entering the closest-ever orbit around a planetary body, OSIRIS-REx has overcome several challenges since arriving at the asteroid in December 2018. Last month, the mission brought the spacecraft 213 ft (65 m) from the asteroid's surface during its first sample collection rehearsal - successfully completing a practice run of the activities leading up to the sampling event. Now that the mission is ready to collect a sample, the team is facing a different kind of challenge here on Earth. In response to COVID-19 constraints and after the intense preparation for the first rehearsal, the OSIRIS-REx mission has decided to provide its team with additional preparation time for both the final rehearsal and the sample collection event.


Spacecraft activities require significant lead time for the development and testing of operations, and given the current requirements that limit in-person participation at the mission support area, the mission would benefit from giving the team additional time to complete these preparations in the new environment. As a result, both the second rehearsal and first sample collection attempt will have two extra months for planning.

"In planning the mission, we included robust schedule margin while at Bennu to provide the flexibility to address unexpected challenges," said Rich Burns, OSIRIS-REx project manager at NASA's Goddard Space Flight Center. "This flexibility has allowed us to adapt to the surprises that Bennu has thrown at us. It's now time to prioritize the health and safety of both team members and the spacecraft."

The mission had originally planned to perform the first Touch-and-Go (TAG) sample collection event on Aug. 25 after completing a second rehearsal in June. This rehearsal, now scheduled for Aug. 11, will bring the spacecraft through the first three maneuvers of the sample collection sequence to an approximate altitude of 131 ft (40 m) over the surface of Bennu. The first sample collection attempt is now scheduled for Oct. 20, during which the spacecraft will descend to Bennu's surface and collect material from sample site Nightingale.

"This mission's incredible performance so far is a testament to the extraordinary skill and dedication of the OSIRIS-REx team," said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. "I am confident that even in the face of the current challenge, this team will be successful in collecting our sample from Bennu."

During the TAG event, OSIRIS-REx's sampling mechanism will touch Bennu's surface for approximately five seconds, fire a charge of pressurized nitrogen to disturb the surface, and collect a sample before the spacecraft backs away.

The mission has resources onboard for three sample collection opportunities. If the spacecraft successfully collects a sufficient sample on Oct. 20, no additional sampling attempts will be made. The spacecraft is scheduled to depart Bennu in mid-2021, and will return the sample to Earth on Sept. 24, 2023.

понедельник, 11 мая 2020 г.

Hayabusa 2 помог определить, что астероид Рюгу «обгорел» на Солнце, приблизившись к нему

Японский зонд Hayabusa 2 продолжает свой путь на Землю после успешно выполненной миссии у астероида Рюгу. Ожидается, что аппарат доставит на нашу планету образцы астероида в декабре этого года. Но уже собранных Hayabusa 2 данных достаточно для проведения ряда исследований, о некоторых из них, раскрывающих химическую и физическую природу Рюгу, мы уже рассказывали. Теперь выяснились новые подробности из жизни космического камня, который хранит следы древней Солнечной системы. Hayabusa 2 несколько раз сближался с астероидом, посылал на его поверхность посадочные аппараты, дважды совершил заборы проб грунта. В ходе работ он снимал поверхность Рюгу с помощью своей камеры и спектрометра. Изучая снимки, физики Токийского университета обнаружили, что на поверхности присутствуют два разных типа материала, отличающихся цветами: материал ближе к синей части спектра распределен на экваториальном гребне и в полярных областях, а красноватый материал сосредоточен в средних широтах. В качестве места для отбора проб 21 февраля 2019 года был выбран участок со смешанными цветами. Однако когда поверхностный слой был поврежден воздействием пробоотборного механизма, под ним обнажился красноватый материал. Также астрономы выяснили, что более крупные валуны чаще имеют синеватый цвет, а более мелкий материал вокруг них – красноватый. Было обнаружено, что кратеры, заполненные более синим материалом, оказывались моложе, чем красноватые. Как будто удар пробил красный верхний слой и обнажил синюю поверхность под ним. Все это предполагало, что основная часть астероида была первоначально синеватой и покраснела под воздействием некоторых процессов. Причем временные и химические ограничения накладывает тот факт, что более крупные валуны не покраснели в отличие от мелких частиц.


Астрономам известны два механизма, которые могут приводить к такому результату. Это космическое выветривание и солнечная радиация. Но выветривание обычно «красит» только очень тонкий поверхностный слой, буквально нанометры его, тогда как солнечная радиация проникает глубже. Расчеты же показывают, что красноватый слой Рюгу составлял несколько десятков сантиметров.


Исследователи считают, что Рюгу мог «покраснеть», сблизившись с Солнцем в какой-то фазе своей жизни, оказавшейся менее спокойной, чем можно было предположить. Последние изменения его структуры произошли всего 8,7 миллиона лет назад, то есть астероид очень молодой. Он начал свою жизнь в поясе астероидов на орбите между Марсом и Юпитером, где столкновения с другими телами происходят гораздо чаще, чем на нынешней орбите Рюгу относительно недалеко от земной. Основываясь на цветах и количестве крупных кратеров на поверхности, ученые и рассчитали время, когда Рюгу мог покинуть главный пояс астероидов и «обгореть».

Учитывая эти химические отпечатки путешествия Рюгу по Солнечной системе, ученые с еще большим нетерпением ждут доставки образцов Hayabusa 2, поскольку в пробоотборник должны были попасть образцы и синеватые, и красноватые.