FIRST ENCOUNTER
Harvard Natural Sciences Lecture Demonstrations
This finding makes Comet Borisov unlike any other comet in the solar system except one: Comet Hale-Bopp (C/1995 O1). This brilliant comet was visible to the naked eye for a year and a half, a record that jived with scientists’ assessment that Hale-Bopp had only approached the Sun perhaps once before, around 2000 B.C. Years of observations of “The Great Comet of 1997” confirmed that the dust particles suffusing its coma were smaller than around any other observed comet.
What this means for Borisov is that its encounter with our Sun was the first time it came up close to any star, including its own. It must have originated far out from its host before being ejected into interplanetary space, making our Sun the first to quicken its cometary activity.
Unfortunately, further observations to confirm the small-grain scenario were scuttled due to the COVID-19 pandemic, which shuttered Paranal Observatory from March through August 2020. Operations have restarted in limited mode but it was already too late for the observations Bagnulo had planned. “These data would have been very useful to further characterize the dust particles,” Bagnulo says.
FROM DUST TO PEBBLES
Interestingly, a study in Nature Astronomy led by Bin Yang (European Southern Observatory, Chile) finds a result apparently opposite to what Bagnulo’s team observed. Yang and her colleagues measured and modeled the heat the comet radiates, also looking for the size of dust grains within its coma.
The comet is cold — it reached a balmy 200K (–100°F) at perihelion, when it was twice Earth’s distance from the Sun — so these observations were carried out at radio wavelengths using the Atacama Large Millimeter/submillimeter Array in Chile.
This technique is sensitive to large grains rather than small ones, so it’s not unexpected that the team ended up finding “pebbles” larger than a millimeter in size. But while the larger dust grains of solar system comets are fluffier, the pebbles around Comet Borisov are denser than other comets. The researchers suggest that bouncy collisions (rather than destructive ones) in its host system’s protoplanetary disk compacted the grains.
While the two techniques explore opposite aspects of the comet’s dust, they don’t really contradict each other. “If there’s a mix of composition, it wouldn’t be surprising,” Bagnulo says. “We need to combine both data sets to understand what is going on.”
The fact that we saw Borisov at all, discovered by amateur Gennady Borisov in Crimea, involved a bit of chance. “Imagine how lucky we were that a comet from a system light-years away simply took a trip to our doorstep,” Yang says. But we’re even more fortunate that we have the instruments to decode this messenger from afar, deciphering not only its nature but its origin.
Комментариев нет:
Отправить комментарий